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Abstract. We derive a probabilistic framework for robust, real-time,
visual tracking of previously unseen objects from a moving camera. The
tracking problem is handled using a bag-of-pixels representation and
comprises a rigid registration between frames, a segmentation and on-
line appearance learning. The registration compensates for rigid motion,
segmentation models any residual shape deformation and the online ap-
pearance learning provides continual refinement of both the object and
background appearance models. The key to the success of our method
is the use of pixel-wise posteriors, as opposed to likelihoods. We demon-
strate the superior performance of our tracker by comparing cost function
statistics against those commonly used in the visual tracking literature.
Our comparison method provides a way of summarising tracking perfor-
mance using lots of data from a variety of different sequences.

1 Introduction

Fast and reliable visual tracking is a prerequisite for a vast number of applications
in computer vision. Though it has been the subject of intense effort over the
last two decades, it remains a difficult problem for a number of reasons. In
particular, when tracking previously unseen targets, many of the constraints
that give reliability to other tracking systems – such as strong prior information
about shape, appearance or motion – are unavailable.

One technique that has shown considerable promise for its ability to perform
tracking and segmentation within a unified framework is the use of an implicit
contour, or level-set to represent the boundary of the target [1–3]. As well as
handling topological changes seamlessly, tracking using level-sets can be couched
in a fairly standard probabilistic formulation [4, 5], and hence leverage the power
of Bayesian methods.

In this paper, we present a novel probabilistic framework for combined track-
ing and segmentation, which, as well as capturing all of the desirable properties
of level-set based tracking, is very robust and runs in a few milliseconds on
standard hardware. We base our framework on a generative model of image for-
mation that represents the image as a bag-of-pixels [6]. The advantage of such
? This work is sponsored by Servowatch Systems Ltd.



a model – in common with other simpler density-based representations such as
colour-histograms – is the degree of invariance to viewpoint this confers.

Like [4], we derive a probabilistic, region based, level-set framework, which
comprises an optimal rigid registration, followed by a segmentation to re-segment
the object and account for non-rigid deformations. Aside from issues of speed
(which are not addressed in [4]) there are a number of key differences between
[4] and our work, some of which stem from the generative model we use for
image data (see Sect. 2). First, our derivation gives a probabilistic interpretation
to the Heaviside step function used in most region based level-set methods [7,
4]. Second, given this interpretation we propose a pixel-wise posterior term, as
opposed to a likelihood, which allows us to marginalise out model parameters at
a pixel level. As we show in Sect. 2, this derives naturally from our generative
model, and is a subtle but absolutely crucial difference between our method and
others e.g. [4, 2, 3], as our results show in Sect. 7. Third, in contrast to [7, 4]
and similar to [8, 9] we assume a non-parametric distribution for image values
as opposed to a single Gaussian (for an entire region). Finally, we introduce a
prior on the embedding function which constrains it to be an approximate signed
distance function. We show that this gives a clean probabilistic interpretation to
the idea proposed by [10] and avoids the need for reinitialisation of the embedding
function that is necessary in the majority of level-set based approaches.

Our work also bears some similarity to [11] who sought the rigid transfor-
mation that best aligns a fixed shape-kernel with image data using the Bhat-
tacharyya coefficient. This work extended the pioneering work of this type [12,
13] to handle translation+scale+rotation as opposed to translation only or trans-
lation+scale. In contrast to [11], however, we allow the shape to change online
and propose a novel framework using pixel-wise posteriors, which removes the
cost of building an empirical distribution and testing it with the Bhattacharyya
coefficient. This has a second hidden benefit as it avoids the need to build a
‘good’ empirical distribution given limited data, we find in practice this gives a
significant improvement over [12, 13, 11].

Unlike [4], Freedman and Zhang [8, 9] use a non-parametric distribution for
image data. They derive contour flows based on both KL-divergence and the
Bhattacharyya coefficient. Though they demonstrate that both are effective for
tracking, they do not model rigid transformation parameters explicitly, they
must recompute their non-parametric distributions at every iteration, and – as
we show in Sect. 7 – objectives based on the Bhattacharyya coefficient are inferior
to the one we propose.

Finally, it is worth mentioning template based tracking methods (see [14] for
an excellent summary of past work). We include an ideal SSD cost in our results
(Sect. 7), which uses the correct template at each frame. Though this unfairly
advantages the SSD method – since in reality the exact template is never avail-
able – it does suggest that in future there would be benefit in considering how
spatial information can be incorporated. Thus although our method is currently
based solely on non-parametric distributions we are currently investigating ways
to augment it with spatial information.



The key problem with template tracking is how to adapt the template over
time. Within our framework (and other similar work), because the segmentation
is performed rapidly and reliably online, the appearance and shape models of the
object can be updated over time without suffering from the significant problems
of drift that plague other algorithms.

Our framework is general enough to be extended to various types of prior
information and various imaging modalities, but in this paper we restrict our-
selves to the problem of tracking the 2D projections of either 2D or 3D objects
in ordinary colour video. In summary, the key benefits of our method are: (i) an
extensible probabilistic framework; (ii) robustness - given by pixel-wise posteri-
ors and marginalisation; (iii) real-time performance; (iv) excellent cost function
characteristics; (v) no need to compute empirical distributions at every frame;
(vi) online learning (i.e. adaption of appearance and shape characteristics); (vii)
flexibility to track many different types of object and (viii) high invariance to
view and appearance changes.

The remainder of this paper is organised as follows: Sect. 2 describes the
representation of the object being tracked and derives a probabilistic framework
from a simple generative model; Sect. 3 outlines the level-set segmentation; Sect.
4 shows the registration process; Sect. 5 describes our method for dealing with
drift; Sect. 6 outlines the online learning process; Sect. 7 shows our results and
Sect. 8 concludes with a summary and discussion.

2 The Generative Model
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Fig. 1. (Left): Representation of object showing: the contour C, the set of foreground
pixels Ωf , the set of background pixels Ωb, the foreground model P (y|Mf ), the back-
ground model P (y|Mb) and the warp W(x,p); (Right): Graphical representation of
our generative model representing the image as a bag-of-pixels, which gives greater
invariance to viewpoint compared with template based tracking.



We represent the object being tracked by: its shape C, its location in the
image W(x,p) and two underlying appearance models: one for the foreground
P (y|Mf ) and one for the background P (y|Mb). Figure 1 illustrates this with a
simple example.

Shape: is represented by the zero level-set C = {x|Φ(x) = 0} of an embed-
ding function Φ(x) [1, 5]. The pixels Ω in the object frame are segmented into
two regions: one for the foreground Ωf and one for the background Ωb.

Location: is described by a warp W(x,p) that takes a pixel location x in the
object frame and warps it into the image frame according to parameters p. This
warp must form a group [14]; however, this is acceptable as many common useful
transformations in computer vision do form groups, for instance: translation,
translation+scale, similarity transforms, affine transforms and homographies.

Appearance models: P (y|Mf ) and P (y|Mb) are represented with YUV
histograms using 32 bins per channel. The histograms are initialised either from
a detection module or a user inputted initial bounding box. The pixels inside
the bounding box are used to build the foreground model and the pixels from an
inflated bounding box are used to build the background model. The two initial
distributions are then used to produce a tentative segmentation, which is in turn
used to rebuild the model. This procedure is iterated until the shape converges
(similar to [15]). Once tracking commences the appearance models and shape C
are estimated (adapted) online, as described in Sect. 6. In summary, we use the
following notation:

– x: A pixel location in the object coordinate frame.
– y: A pixel value (in our experiments this is a YUV value).
– I: Image.
– W(x,p): Warp with parameters p (must form a group).
– M = {Mf ,Mb}: Model parameter either foreground or background.
– P (y|Mf ): Foreground model over pixel values y.
– P (y|Mb): Background model over pixel values y.
– C: The contour that segments the foreground from background.
– Φ(x): Shape kernel (in our case the level-set embedding function).
– Ω = {Ωf ,Ωb}: Pixels in the object frame [{x0,y0}, . . . , {xN ,yN}], which is

partitioned into foreground pixels Ωf and background pixels Ωb.
– Hε(z): Smoothed Heaviside step function.
– δε(z): Smoothed Dirac delta function.

Figure 1 illustrates the simple generative model we use to represent the image for-
mation process. This model treats the image as a bag-of-pixels [6] and can, given
the model M , the shape Φ and the location p, be used to sample pixels {x,y}. Al-
though the resultant image would not look like the true foreground/background
image to a human (the pixels would be jumbled up), the colour distributions
corresponding to the foreground/background regions Ωf/Ωb would match the
models P (y|Mf ) and P (y|Mb). It is this simplicity that gives more invariance
to viewpoint and allows 3D objects to be tracked robustly without having to
model their specific 3D structure. The joint distribution for a single pixel given
by the model in Fig. 1 is:



P (x,y,Φ,p,M) = P (x|Φ,p,M)P (y|M)P (M)P (Φ)P (p). (1)

We now divide (1) by P (y) =
∑

M P (y|M)P (M) to give:

P (x,Φ,p,M |y) = P (x|Φ,p,M)P (M |y)P (Φ)P (p), (2)

where the term P (M |y) is the pixel-wise posterior, of the models M , given a
pixel value y:

P (Mj |y) =
P (y|Mj)P (Mj)∑

{i=f,b} P (y|Mi)P (Mi)
j = {f, b}. (3)

Using this posterior is equivalent to applying Bayesian model selection to each
individual pixel.1 We now marginalise over the models M , yielding the pixel-wise
posterior probability of the shape Φ and the location p given a pixel {x,y}:

P (Φ,p|x,y) =
1

P (x)

∑
{i=f,b}

{P (x|Φ,p,Mi)P (Mi|y)}P (Φ)P (p). (4)

Note that the pixel-wise posterior and marginalisation are the subtle but crucial
differences to the work in [4], which lacks the marginalisation step and uses a
pixel-wise likelihood P (y|M). We show in Sect. 7 that our formulation yields a
much better behaved objective. We consider two possible methods for fusing the
pixel-wise posteriors: (i) a logarithmic opinion pool (LogOP):

P (Φ,p|Ω) =
N∏

i=1

{∑
M

{P (xi|Φ,p,M)P (M |yi)}

}
P (Φ)P (p) (5)

and (ii) a linear opinion pool (LinOP):

P (Φ,p|Ω) =
N∑

i=1

{∑
M

{P (xi|Φ,p,M)P (M |yi)}

}
P (Φ)P (p). (6)

The logarithmic opinion pool is normally the preferred choice and is most similar
to previous work [4, 5]; whereas the linear opinion pool is equivalent to marginal-
ising over the pixel locations – this is allowed as our bag-of-pixels generative
model treats pixel locations as a random variable. We continue our derivation
assuming a logarithmic opinion pool for clarity, but also include results using a
linear opinion pool for completeness. Note the term 1

P (x) has been dropped as
it is constant for all pixel locations and we only seek to maximise P (Φ,p|Ω).
1 It is also the distribution that would be computed in the E-step of an EM solution

to the problem.



3 Segmentation

The typical approach to region based segmentation methods is to take a product
of the pixel-wise likelihood functions

∏N
i=1 P (I(xi)|Mi), over pixel locations xi,

to get the overall likelihood P (I|M). This can then be expressed as a summation
by taking logs and optimised using variational level-sets [1, 5]. In contrast to these
methods, our derivation leads to pixel-wise posteriors and marginalisation (5),
a subtle but important difference.

For the remainder of this section, in order to simplify our expressions (and
without loss of generality), we assume that the registration is correct and there-
fore xi = W(xi,p). We now specify the term P (xi|Φ,p,M) in (5) and the term
P (M) in (3) :

P (xi|Φ,p,Mf ) =
Hε(Φ(xi))

ηf
P (xi|Φ,p,Mb) =

1−Hε(Φ(xi))
ηb

(7)

P (Mf ) =
ηf

η
P (Mb) =

ηb

η
, (8)

where

η = ηf + ηb, ηf =
N∑

i=1

Hε(Φ(xi)), ηb =
N∑

i=1

1−Hε(Φ(xi)). (9)

Equation (7) represents normalised versions of the blurred Heaviside step func-
tions used in typical region based level-set methods and can now be interpreted
probabilistically as model specific spatial priors for a pixel location x. Equation
(8) represents the model priors, which are given by the ratio of the area of the
model specific region to the total area of both models. Equation (9) contains the
normalisation constants (note that η = N).

We now specify a geometric prior on Φ that rewards a signed distance func-
tion:

P (Φ) =
N∏

i=1

1
σ
√

2π
exp− (|OΦ(xi)| − 1)2

2σ2
, (10)

where σ specifies the relative weight of the prior. This gives a probabilistic in-
terpretation to the work in [10]. Substituting (7), (8), (9) and (10) into (5) and
taking logs, gives the following expression for the log posterior:

log(P (Φ,p|Ω)) ∝
N∑

i=1

{
log (P (xi|Φ,p,yi))−

(|OΦ(xi)| − 1)2

2σ2

}
+

N log
(

1
σ
√

2π

)
+ log(P (p)), (11)



where

P (xi|Φ,p,yi) = Hε(Φ(xi))Pf + (1−Hε(Φ(xi)))Pb

and

Pf =
P (yi|Mf )

ηfP (yi|Mf ) + ηbP (yi|Mb)
Pb =

P (yi|Mb)
ηfP (yi|Mf ) + ηbP (yi|Mb)

.

Given that we are about to optimise w.r.t to Φ we can drop the last two terms
in (11) and by calculus of variations [16] express the first variation (Gateaux
derivative) of the functional as:

∂P (Φ,p|Ω)
∂Φ

=
δε(Φ)(Pf − Pb)
P (x|Φ,p,y)

− 1
σ2

[
O2Φ− div

(
OΦ
|OΦ|

)]
, (12)

where O2 is the Laplacian operator and δε(Φ) is the derivative of the blurred
Heaviside step function, i.e. a blurred Dirac delta function. Interestingly, δε(Φ)
can now be interpreted as a way of expressing uncertainty on the contour C.
If we were to use Gaussian uncertainty for the contour then the region based
uncertainty would be expressed in terms of erf(Φ) instead of Hε(Φ) (we do not
explore this any further in this paper). We seek ∂P (Φ,p||Ω)

∂Φ = 0 by carrying out
steepest-ascent using the following gradient flow:

∂P (Φ,p|Ω)
∂t

=
∂P (Φ,p|Ω)

∂Φ
. (13)

In practice this is implemented using a simple numerical scheme on a discrete
grid. All spatial derivatives are computed using central differences and the Lapla-
cian uses a 3x3 spatial kernel. We use σ =

√
50 and a timestep τ = 1 for all

experiments. For stability τ
σ2 < 0.25 must be satisfied (see [10] for details).

4 Tracking

It is possible to pose the tracking problem directly in a segmentation framework
[8]. Instead, like [4] we model the frame-to-frame registration explicitly, by hav-
ing the level-set in the object frame and introducing a warp W(x,p) into (11).
The main benefits of this approach are: (i) control over the interaction between
registration (tracking) and segmentation (local shape deformation); (ii) by regis-
tering the embedding function first, fewer iterations are required to take account
of shape changes (in fact we find one per frame is adequate for our sequences).
We now drop any terms in (11) that are not a function of p in preparation for
differentiation:

log(P (Φ,p|Ω)) ∝
N∑

i=1

{
log (P (xi|Φ,p,yi))

}
+ log(P (p)) + const. (14)



Introducing a warp W(xi,∆p) into (14) and dropping the prior term for brevity
(we revisit this term in Sect. 5):

log(P (Φ,p|Ω)) ∝
N∑

i=1

{
log (P (W(xi,∆p)|Φ,p,yi))

}
, (15)

where ∆p represents an incremental warp of the shape kernel. There are many
ways this expression could be optimised, the most similar work uses simple gradi-
ent ascent [4]. In contrast, we take advantage of the fact that all of the individual
terms are probabilities, and therefore strictly positive. This allows us to write
certain terms as squared square-roots and substitute in a first-order Taylor series
approximation for each square-root, for example:

[√
Hε(Φ(W(xi,∆p))

]2

≈

[√
Hε(Φ(xi)) +

1
2
√

Hε(Φ(xi))
J∆p

]2

, (16)

where:

J =
∂Hε

∂Φ
∂Φ
∂x

∂W
∂∆p

= δε(Φ(xi)) OΦ(xi)
∂W
∂∆p

.

Likewise we apply a similar expansion to (1 − Hε(Φ(W(xi,∆p))), allowing us
to then optimise using Gauss-Newton2. This has the advantage that the Hessian
itself is not required, rather, a first-order approximation of the Hessian is used.
In consequence it is fast, and in our experience exhibits rapid and reliable con-
vergence in our problem domain. It also avoids the issues highlighted in [17] of
choosing the appropriate step size for gradient ascent. Excluding the full details
for brevity we arrive at an expression for ∆p:

∆p =

[
N∑

i=1

1
2P (xi|Φ,p,yi)

(
Pf

H(Φ(xi))
+

Pb

(1−H(Φ(xi)))

)
JT J

]−1

×

N∑
i=1

(Pf − Pb)JT

P (xi|Φ,p,yi)
. (17)

Equation (17) is then used to update the parameters p by composing W(xi,p)
with W(xi,∆p)−1, analogous to inverse compositional tracking [14].

5 Drift Correction

Having the object represented by its location p and shape Φ leaves an ambiguity
where it is possible to explain rigid transformations of the shape either with p
2 The Taylor expansion is poorly conditioned if Hε(Φ(xi) = 0; in practice this does

not happen as the terms are never equal to zero.



or Φ. Ideally, any rigid motion would be explained solely by p; however, over
time the shape Φ slowly incorporates a rigid transformation. We define a prior
on the location P (p) which makes small corrections to keep the left/right and
top/bottom borders3 balanced and the minimum border distance equal to four
pixels. This is implemented using a proportional controller that takes the four
border distances as its input and outputs the prior P (p).

6 Online Learning

Once registration and segmentation are completed both the foreground and back-
ground models are adapted online. This is achieved using linear opinion pools
with variable learning rates αi, i = {f, b}:

Pt(y|Mi) = (1− αi)Pt−1(y|Mi) + αiPt(y|Mi), i = {f, b}. (18)

In all experiments αf = 0.02 and αb = 0.025. For shape adaptation we control the
evolution rate of the level-set using the timestep τ . Ideally these three parameters
would change dynamically throughout the sequence to prevent learning occurring
during times of confusion or if the object is lost, we intend to do this in future
work.

7 Results

We have tested our system extensively on live video, as well as on a variety
of recorded sequences which include objects that exhibit rapid and agile motion
with significant motion blur, varying lighting, moving cameras, and cluttered and
changing backgrounds. Figure 2 shows a qualitative evaluation of our method on
three sequences. The first is a speedboat undergoing a 180◦ out-of-plane rotation
– note how the shape is adapted online. The second is a person jumping around
– note the motion blur and shape adaptation. Finally, the third is a hand being
tracked from a head mounted camera past a challenging background which has
a similar appearance to the object.

To perform a quantitative evaluation we have analysed the characteristics
of the underlying cost functions for our technique compared with competing
alternatives, on a set of pre-recorded video sequences. Figure 3 shows still images
taken mid-sequence from a subset of these sequences; the minimum length of each
of these sequences is 400 frames and the total number of frames is over 20,000.
The system was able to track each object successfully throughout each sequence.

More importantly, we have used these sequences to perform a critical perfor-
mance analysis, looking in detail at the characteristics of our cost function for
alignment compared with other possibilities. To do this we compute 160 pertur-
bations p + ∆p (about the true location p) for each video frame and then at
3 Smallest distances between the contour and the corresponding side of the foreground

box.



Fig. 2. Qualitative evaluation: (top) a speedboat undergoing a 180◦ out-of-plane rota-
tion illustrating shape adaptation; (middle) a person jumping around with significant
motion blur; (bottom) a hand being tracked in front of a challenging background.

each perturbation, evaluate a set of cost functions that are commonly used in
other tracking methods, such as: level-set methods based on likelihoods [4, 2],
mean-shift [12, 13, 11], inverse compositional [14] and distribution based track-
ing [8, 9]. We consider perturbations for each dimension separately to allow us
to plot one-dimensional graphs, i.e. translation in x, translation in y, scale and
rotation. By examining these cost functions we can find all extrema and exam-
ine how they are distributed across the space. An ideal cost function would be
convex with a single extrema at the true location. The particular cost functions
we consider are:

– LogPWP: Pixel-wise posteriors fused using a logarithmic opinion pool.
– LinPWP: Pixel-wise posteriors fused using a linear opinion pool.
– LogLike: Log likelihood, used in most level-set work [5, 4, 2].
– BhattF: Bhattacharyya coefficient:

B(Ωf ) =
∑V

j=1

√
P (yj |Mf )P (yj |Ωf ), used by [12, 13, 11].

– BhattFB: Bhattacharyya coefficient with a background model:
B(Ωf ,Ωb) =

∑V
j=1

√
P (yj |Mf )p(yj |Ωf ) +

∑V
j=1

√
P (yj |Mb)P (yj |Ωb).

– BhattFBM: Bhattacharyya coefficient with a background mismatch:
B(Ωf ,Ωb) =

∑V
j=1

√
P (y|Mf )p(y;Ωf )−

∑V
j=1

√
P (yj |Mf )P (yj |Ωb), sug-

gested by [9].
– Ideal SSD: Sum of squared pixel differences using the ideal template i.e.

the template extracted at the current location p. This is essentially what
you would get if you had the perfect generative model giving the true pixel
value at each pixel location including the noise. This of course is never going



Fig. 3. A selection of video frames from the data sets: (1st row) lifeboat, Coca-Cola
mug, a face and a hand filmed from a head mounted camera; (2nd row) a hand us-
ing a mouse, a speedboat, a person from the caviar data set [18] and a tractor. The
white indicates the current segmentation and the two black boxes indicate the object
coordinate frame.

to be achievable but has been included as a useful benchmark and gives an
indication of what effect incorporating texture may have.

Note: V is the number of pixel values i.e. 32× 32× 32; P (y|Ωi) i = {f, b} is the
empirical density built from the pixels Ωi and when computing Bhattacharyya
coefficients we weight the contribution of each pixel according to our shape
kernel, which is identical to Yilmaz’s work [11].

In summary, we extract all extrema at each frame and then compute a dis-
tribution of their locations for each dimension. These distributions provide a
compact representation of the quality of different cost functions, summarised
over a variety of real video sequences. The ideal distribution would be a delta
function centred on the true state; whereas a good distribution would be peaky
around the true state and have low probability of local extrema within the re-
gion it will be required to converge from. A bad distribution would be relatively
flat with high probability of local extrema over the entire space. Figure 4 shows
distributions generated from over 20,000 real video frames for: translation in x,
translation in y, scale and rotation.

– Translation in x and y: Our method has narrower distributions near the
true state than all methods apart from ideal SSD and is significantly better
than the log likelihood used by [4]. Unlike the other methods it also exhibits
virtually no extrema outside a +/- 5 pixel region – this means that our
methods will converge to within +/- 5 pixels of the true state from anywhere
within the +/- 20 pixel space we have evaluated.

– Scale: The Bhattacharyya method and Bhattacharyya with background mis-
match both have poor localisation in scale, which is in agreement with the
findings of many authors. The log likelihood also poorly localises scale com-
pared with our posterior based methods.
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Fig. 4. Quantitative Analysis: Log probability distribution of extrema in the cost func-
tions generated from 20,000 frames of real video data.

– Rotation: All Bhattacharyya methods and the log likelihood are poor at
correctly localising the rotation. The straight Bhattacharyya coefficient for
example has more than a 1% chance of exhibiting extrema anywhere in the
rotation space, at a 30Hz frame rate this corresponds to approximately 1
frame in every 3 seconds of video. It is worth noting that the side lobes (at
approximately 25◦) exhibited by our methods and ideal SSD are due to the
self similarity corresponding to fingers in the hand sequences.

Experimentally we were unable to make the log likelihood successfully track sev-
eral of our sequences, which is confirmed by its poor performance in Fig. 4. One
possible explanation is that in other work [4, 5, 2], a single Gaussian parametric
model is used. This implicitly enforces a smooth, unimodal distribution for the
joint likelihood. Non-parametric representations do not exhibit these properties;
however, they are better at describing complicated distributions and therefore
desirable. The reason that our method can deal with these distributions is be-
cause of the normalising denominator in (3) and the marginalisation step in (4).
These two steps prevent individual pixels from dominating the cost function
hence making it smoother and well-behaved.

The work of [8] and its subsequent improvement [9] use distribution matching
techniques to incorporate non-parametric distributions into a level-set frame-
work. These methods similar to the Bhattacharyya based methods involve com-



puting the empirical densities at every iteration of the optimisation; whereas,
our method avoids this extra cost. Not only is our method superior to these ap-
proaches in terms of cost functions (see Fig. 4), but it is computationally cheaper
to evaluate as it does not require empirical distributions. This is a significant
benefit because it not only reduces the cost per iteration, but avoids the issue of
having to build ‘good’ distributions. One explanation for difference between the
performance of these methods and ours, is that it is hard to build ‘good’ em-
pirical distributions in real-time and most methods rely on simple histograms.
Although this could be improved with Parzen or NP windowing techniques [19],
it would almost certainly sacrifice real-time performance.

7.1 Timing

All terms in (17) include δε(Φ(xi)) (blurred Dirac delta function). This means
that an individual pixel’s contribution to the optimisation diminishes the further
from the contour it is. An efficient implementation, therefore, recognises this. Our
implementation ignores pixels outside a narrow band and for an object size of
180× 180 runs in 500µs on a P4 3.6GHz machine. On average the system runs
at a frame rate of 85Hz for the complete algorithm and if shape and appearance
learning are turned off (i.e. rigid registration only) it averages 230Hz.

8 Conclusions

We have proposed a novel probabilistic framework for robust, real-time, visual
tracking of previously unseen objects from a moving camera. The key contri-
bution of our method and reason for its superior performance compared with
others is the use of pixel-wise posteriors as opposed to a product over pixel-wise
likelihoods. In contrast to other methods [4, 5], we solve the registration using
Gauss Newton, which has significant practical benefits, namely: (i) the difficulty
associated with step size selection is removed and (ii) reliable and fast conver-
gence. We have demonstrated the benefits of our method both qualitatively and
quantitatively with a thorough analysis of pixel-wise posteriors versus compet-
ing alternatives using over 20,000 video frames. Our results demonstrate that
using pixel-wise posteriors provides excellent performance when incorporating
non-parametric distributions into region based level-sets. It not only offers su-
perior cost functions but avoids the need for computing empirical distributions
[12, 8, 9, 11] and is therefore faster.

In our ongoing research we are investigating in more detail the probabilistic
interpretation of the blurred Heaviside step functions, and in particular the link
with Gaussian uncertainty on contour location. Other work of future interest
involves modifying the generative model to capture spatial information, and
investigating how to incorporate multiple objects and online occlusion handling.
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